Article 5320

Title of the article

SPACE OF ENTROPY-PARAMETRIC CHARACTERISTICS FOR CONTROL OF THE NON-SYMMETRIC DISTRIBUTIONS FORM 

Authors

Polosin Vitaliy Germanovich, Doctor of engineering sciences, professor, sub-department medical cybernetics and informatics, Penza State University (40 Krasnaya street, Penza, Russia), E-mail: polosin-vitalij@yandex.ru 

Index UDK

623.746.2 

DOI

10.21685/2072-3059-2020-3-5 

Abstract

Background. The task of most experimental studies is to establish an adequate distribution model based on the analysis of sample data of the observed object. Despite the good algorithmization of the choice of model parameters, the problem of choosing the shape of a mathematical model remains poorly formalized. The traditionally used graphical methods for establishing the shape of dependencies are limited by the qualitative correspondence of the model and the obtained results, since existing methods for classifying models based on only probabilistic signs do not allow us to identify differences in the shapes of close distribution families. In this regard, the actual construction of a space for classification and approximate identification of distribution shapes by a combination of information and probability signs.
Materials and methods. The work contains an analysis of the shortcomings of the common method for approximate determination of the shape of nonsymmetric distributions based on the asymmetry and the kurtosis. The paper proposes to use the entropy coefficient as a feature for formalizing information signs of nonsymmetric distributions. The joint use of informational and probabilistic signs allowed us to develop a feature space for entropy – parametric analysis and control of the shape of nonsymmetric distributions.
Results. The application of the mathematical formalization of the entropy – parametric signs of nonsymmetric distributions to the family of generalized gamma distributions allowed us to distinguish many distinguishable shapes of the Weibull – Gnedenko distribution families, the gamma distribution, the logarithmic normal distribution, exponential distributions, and Pearson distributions. The boundaries of the application of the Pareto distribution for constructing a model simplification are estimated.
Conclusions. The paper contains material illustrating the promising use of the space of entropy-parametric signs for classification and the approximate shape of asymmetric distributions.

Key words

informational and probabilistic signs, entropy coefficient, antikurtosis, asymmetry, shape of nonsymmetric distribution

Download PDF
References

1. Volkova V. N., Denisov A. A. Teoriya sistem i sistemnyy analiz [Systems theory and systems analysis]. Moscow: Izdatel'stvo Yurayt: ID Yurayt, 2012, 679 p. [In Russian]
2. Belokonov I. V. Statisticheskiy analiz dinamicheskikh sistem (Analiz dvizheniya letatel'nykh apparatov v usloviyakh statisticheskoy neopredelennosti) [Statistical analysis of dynamic systems (Analysis of the movement of aircraft under conditions of statistical uncertainty)]. Samara: Samarskiy gosud. aerokosm. un-t, 2001, 64 p. [In Russian]
3. Brandt Z. Analiz dannykh. Statisticheskie i vychislitel'nye metody dlya nauchnykh rabotnikov i inzhenerov [Data analysis. Statistical and computational methods for scientists and engineers]. Moscow: Mir, 2003, 686 p. [In Russian]
4. Tkachev S. V., Mikhotin V. D. Planirovanie eksperimenta dlya ispytaniya datchikovoy apparatury na metrologicheskuyu nadezhnost' [Planning an experiment for testing sensor equipment for metrological reliability]. Penza: Izd-vo Penz. gos. tekhn. un-ta, 1996, 184 p. [In Russian]
5. Cain M. K., Zhang Z., Yuan K. H. Behav. Res. 2017, vol. 49, pp. 1716–1735. DOI 10.3758/s13428-016-0814-1
6. Vadzinskiy R. N. Spravochnik po veroyatnostnym raspredeleniyam [Probability distributions handbook]. Saint-Petersburg: Nauka, 2001, 298 p. [In Russian]
7. NIST/SEMATECH e-Handbook of Statistical Methods. Available at: http://www.itl. nist.gov/div898/handbook/, date. (Links to specific pages can also be referenced this way, if suitable.)
8. Wong W. K. Skewness and kurtosis ratio tests: With applications to multiperiod tail risk analysis. Cardiff Economics Working Papers, No. E2016/8. –Cardiff University, Cardiff Business School, Cardiff, 2016. Available at: http://hdl.handle.net/ 10419/174121.
9. Komsta L., Novomestky F. Moments, cumulants, skewness, kurtosis and related tests. R package version 0.14. 2015. Available at: http://CRAN.R-project.org/package= moments, accessed 04 – 2016.
10. Darie M., Burian S., Csaszar T., Lupu L., Moldovan L., Colda C., Andriș A. IOP Conf. Series: Earth and Environmental Science. 2016, vol. 44, pp. 042041. DOI 10.1088/1755-1315/44/4/042041
11. Rose C., Smith M. D. Mathematical Statistics with Mathematica. New York: Springer-Verlag, 2002, 481 p.
12. Stacy E. W. Annals of Mathematical Statistics. 1962, iss. 33, no. 3, pp. 1187–1192. JSTOR 2237889.
13. Stacy E. W., Mihram G. A. Technometrics. 1965, vol. 7, no. 3, pp. 349–358.
14. Lienhard J. H., Meyer P. L. Qurterly of Applied Mathematics. 1967, vol. XXV, no. 3.
15. Rinne H. The Weibull Distribution: a handbook. London; New York: Chapman and Hall / CRC Press, 2009, 784 p.
16. Khodabin M., Ahmadabadi A. Mathematical Sciences. 2010, vol. 4, no. 1, pp. 9–28.
17. Khastings N., Pikok Dzh. Spravochnik po statisticheskim raspredeleniyam [Handbook of Statistical Distributions]; transl. from Engl. by A. K. Zvonkin. Moscow: Statistika, 1980, 95 p. [In Russian]
18. Kobzar' A. I. Prikladnaya matematicheskaya statistika. Dlya inzhenerov i nauchnykh rabotnikov [Applied mathematical statistics. For engineers and scientists]. 2nd ed. Moscow: Fizmatlit, 2012, 816 p. [In Russian]
19. Horst R. The Weibull distribution: a handbook. Justus-Liebig-University Giessen, Germany, 2009. 761 p.
20. Kraus M., Voshni E. Izmeritel'nye informatsionnye sistemy. [Measuring information systems] Moscow: Mir, 1975, 312 p. [In Russian]
21. Ventsel' V. S. Teoriya veroyatnostey [Probability theory]. Moscow: Vyssh. shk., 1998, 576 p. [In Russian]
22. Yaglom A. M., Yaglom I. M. Veroyatnost' i informatsiya [Probability and information]. Moscow: Nauka, 1973, 512 p. [In Russian]
23. Lin J. IEEE Transactions on information theory. 1991, vol. 37, no. I, pp. 145–151.
24. Tahmasebi S., Behboodian J. Applied Mathematical Sciences. 2010, vol. 4, no. 10, pp. 495–504.
25. Polosin V. G. Vestnik novykh meditsinskikh tekhnologiy [Herald of new medical technologies]. 2017, no. 3. Available at: http://www.medtsu.tula.ru/ VNMT/Bulletin/E2017-3/1-7.pdf (accessed Sept. 19, 2017). DOI: 10.12737/article_59c4b47cf1b9697. [In Russian]
26. Polosin V. G. Izvestiya vysshikh uchebnykh zavedeniy. Povolzhskiy region. Tekhnicheskie nauki [University proceedings. Volga region. Engineering sciences]. 2019, no. 3, pp. 31–44. [In Russian]
27. Novitskiy P. V., Zograf I. A. Otsenka pogreshnostey rezul'tatov izmereniy [Estimation of measurement errors]. Leningrad: Energoatomizdat, 1985, 284 p. [In Russian]

 

Дата создания: 03.12.2020 13:21
Дата обновления: 03.12.2020 15:04